
This analysis has shown that the form of the discharge strongly depends on the pressure 
inside the discharge pipe and on the atmospheric humidity. Under certain experimental con- 
ditions, the volume occupied by the plasma was minimal due to cooling of the plasma by water 
vapor. 
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NONMONOTONIC RELAXATION IN AN ATOMIC GAS AND THE KINETICS OF 

THRESHOLD PROCESSES 

Yu. N. Grigor'ev and A. N. Mikhailitsyn UDC 533.6.011.8 

Deviations from equilibrium in the high molecular energy range can have a significant 
effect on the kinetics of threshold processes such as thermonuclear synthesis, gas phase 
chemical reactions, etc. The nonequilibrium tails of energy distributions must be considered 
in interpreting the results of physical diagnostics employing selective excitation of a gas. 
In this connection the effect of nonequilibrium on relaxation properties and transport pro- 
cesses in gases has attracted much attention [I-7]. However, the pattern of global evolution 
of the distribution function of gas molecules has been studied little, even for the simple 
case of homogeneous relaxation of an atomic gas. This is due to the complexity of the ki- 
netic equation in Boltzmann's theory of gases [8]. 

Individual results obtained with asymptotic estimates [4, 5, 8] and on the basis of 
simple exactly soluble models [7, 9] are basically of a qualitative nature and have limited 
applicability. In particular, for the hydrodynamic moments of the distribution function we 
have Maxwell's estimate, according to which their evolution to local equilibrium is mono- 
tonic and completed in two or three mean free molecular path times [8]. This property of 
transition to equilibrium in the region of the "dome" of the distribution function is the 
basis of the hydrodynamic expansions of the Chapman--Enskog method. But extrapolation of this 
estimate to the process of relaxation of the distribution function as a whole, often found in 
the literature (see, for example, [10]), is in general erroneous. Krook's kinetic model with 
a single relaxation time for the entire energy spectrum also distorts the pattern of evolu- 
tion of the distribution function tail significantly [11]. For example, for finite distribu- 
tions, in which a tail is completely absent at the initial moment, the time required for 
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transition to equilibrium in the high energy range may comprise decades of mean free path 
times [I]. 

The present paper describes a quantitative study of relaxation processes of an atomic 
gas for phase distribution isotropic in velocity space. The processes of nonmonotonic Max- 
wellization will be studied for initial data with exponential and powerlike tail asymptotes, 
as well as finite ones. The main results on time evolution of the phase distribution were 
obtained by direct numerical integration of the nonlinear Boltzmann kinetic equation for 
Maxwellian molecules. The time evolution of the distribution functions presented will be 
analyzed together with individual populations and higher-order scalar moments up to the 
transition to the linear stage of relaxation. It will be shown that the characteristic am- 
plitudes and existence times of the overpopulations which develop are such that they may have 
a significant effect on the kinetics of processes having an energy barrier which develop 
against the background of translational relaxation. Calculations of a high threshold chemi- 
cal reaction are presented as a quantitative example of the effect. 

I. The study of homogeneous relaxation of an atomic gas at the kinetic level involves 
solution of the Cauchy problem for the nonlinear Boltzmann equation. For Maxwellian mole- 
cules and initial conditions isotropic in velocity space the basic mathematical formulation 
of the problem has the form 

a/(v, t)/Ot = J(I, I), /(v, O) = l{o)(v), (1 .1)  

d w n -  [T'fi7-) [ / ( w ' ,  t ) l (v ' ,  t) - / ( w ,  t ) / ( v ,  t)], 

where f(v, t) is the gas molecule distribution function over velocities, dependent on the 
modulus of the velocity v = Iv]; J(f, f) is the collision integral ; (v, w) and (v', w') are 
velocities of molecular pairs before and after collision; u = v -- w; n is the unit vector 
in the direction of the relative velocity of the particles after collision; dn = sin ~d0ds; 
8, z are the singular scattering variables; and B is the scattering indicatrix. 

We choose a system of dimensionless quantities such that the equilibrium Maxwell distri- 
bution [8], which is a steady state solution of Eq. (1.1) as t § ~, can be represented in the 
form 

/o(v) = (2~) -a/~ exp ( 'v~/2). ( 1 . 2) 

Correspondingly, the laws of conservation of gas mass and energy in the problem of Eq. (1.1) 
can be written in the form 

(1.3) 
M o = 4 ~  dvu2/(v~t)= t ,  M 1 = - - ~  dvva/(v, t ) = t .  

0 0 

The mean time between collisions is chosen as the unit of time. Then for the case of iso- 
tropic scattering considered here B = (4v) -l 

The basic difficulty in numerical integration of relaxation problem (1.1) is connected 
with the necessity of multiple calculation of the collision integral J(f, f), fivefold cal- 
culation in the general case. Although in the case of isotropic distribution functions the 
dimensionality of J(f, f) can be reduced [9, 12], with increased requirements for accuracy 
in calculating the distribution function at larger energy intervals and time the use of con- 
ventional numerical quadratures in Eq. (1.1) proves to be ineffective. The present study 
will use the spectral approach proposed in [13]. This approach is based on a discrete analog 
of the Fourier representation of the homogeneous Boltzmann equation [14], which in the case 
under consideration has the form 

oq) (k, t____~) = C (q), q)),: q) (k, O) = (p(o) (k),~ 
ot ( 1 . 4 )  
1 

c (,p, ,p) = 2 j" 0 ,p (k V I  ---c-7, t ) i - +  (k, t) (o, t)], 
0 

where s = sin0/2; k = ]kl is the modulus of the wave vector. Equation (I .4) is related to 
the  o r i g i n a l  Eq. (1 .1 )  by F o u r i e r  t r a n s f o r m  e x p r e s s i o n s  

(p (k) dvv.f (b) sin 2=kv, I (v) = T dkk~ (k) sin 2~kv. 
0 0 
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As was shown in [13], integration of Eq. (1.4) in combination with a fast numerical Fourier 
transform allows a reduction in the volume of numerical computation by a factor of O(N) times 
as compared to the use of conventional numerical quadratures in Eq. (1.1) [where N is the 
number of grid points in the interval of change of the velocity (spectral) variable]. In the 
majority of calculations N = 512 and the integration step in time Te = 0.2. 

In calculating relaxation at large times near the transition to the linear stage, to- 
gether with a solution of the problem in the form of Eq. (1.4) use was made of a Fourier 
representation of a segment of the series 

( F (p+3/2) lFl(__p, 3/2, u~/2)) ( 1 . 5 )  / (U,, t) ~ ]o.(~ t + "~ ap (t) r (3/2) F (p + l) 
{P},P>I 

in  e i g e n f u n c t i o n s  of  t he  l i n e a r i z e d  c o l l i s i o n  o p e r a t o r .  H e r e  F(x)  i s  a gamma f u n c t i o n ;  1Fz(~ ,  
~, x) i s  a d e g e n e r a t e  h y p e r g e o m e t r i c  f u n c t i o n ;  {p} i s  some even s e t  of  numbers ,  c l o s e d  w i t h  
r e s p e c t  to  a d d i t i o n  [ 6 ] .  The c o e f f i c i e n t s  of  t h e  s e r i e s  o f  Eq. ( 1 . 5 )  a r e  c a l c u l a t e d  by i n t e -  
g r a t i o n  of a system of differential equations 

d%(t) + %pap(t)= t ~ ar(t)aq(t),, {p}~ p > t , ,  (1 .6 )  
dt �9 ~p ~ i r+q=p 

where Zp = (p -- 1)/(p + I) are eigenvalues of the linearized collision operator. Using this 
same system with appropriate changes in initial conditions [5, 12] we studiedthe behaviorof 
reduced moments of the distribution function 

4~ Mn (t) -- j dvv2~+2/(v~ t)~ ( 1. 7 ) 
(2n + t)[! 

0 

where n are integers which at high values are sensiti~e indicators of tails. 

For finite initial conditions with an exponential asymptote, where {p} = {n} and a base 
consisting of Laguerre polynomials L~/2(v2/2), 20 base functions were chosen for calculation 
of Eqs. (1.5), (1.6), and the moments of Eqs. (1.7) were calculated up to n = 20 (cf. [9, 15, 
1 6 ] ) .  

Analysis of results of test and preliminary calculations revealed that the complex of 
algorithms and programs used provided the necessary accuracy in distribution function calcu- 
lation, including high energy tails up to v ~ 10 over a time interval to t ~ 15 with low ex- 
penditures of machine time on a BESM-6 computer. 

2. The possibility of nonmonotonic relaxation of an atomic gas was first noted in [17], 
where a self-similar solution of Boltzmann's equation was presented for an intermolecular in- 
teraction with potential U ~ r -4/3, in which at each moment of time within some energy in- 
terval the value exceeds the equilibrium value of the distribution function. Tjon [2] demon- 
strated the nonmonotonic relaxation of an initial distribution of two monoenergetic beams 
separated in velocity space. Examples of other initial conditions during the evolution of 
which overpopulation develops in the high particle energy range were considered in [3, 6, 15, 
16]. In [15], for distribution functions with an initial particle concentration in the tail 
below the equilibrium value of Eq. (1.2) criteria were formulated for the existence of the 
effect. It follows from the asymptote of the reduced distribution function for high energy 
and large time [see Eq. (1.5)] 

(C) 2 
F (v, t) = l (v, t)lio (v) ~_' l : + a~ (O) e - ~  (2.1) 

that the effect is realized if a2(0) > 0. This is a sufficient condition for development of 
repopulation at high energies where at the initial moment the distribution function was below 
its equilibrium value. 

We note that nonmonotonic relaxation can also be created in the region of the distribu- 
tion dome, if at the initial moment a reduced particle concentration is created there. In 
this case the sufficient condition will coincide with that of [15], since the asymptote in the 
the low-energy range for large times t [see Eq. (2.1)] is defined by the free term of the poly- 
nomial L~/2(v2/2), which is always positive [18]. 

The condition of [15] contains no assumptions as to the character of distribution func- 
tion evolution in the nonlinear stage of relaxation. The quantitative characteristics of the 
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process can be obtained only by numerical solution of the relaxation problem. It should be 
said that only in [2] has the effect been studied by integrating the Boltzmann equation for 
a model two-dimensional gas. In [3, 6, 15, 16] etc. calculations were performed on the basis 
of truncated systems of the form of Eq. (1.6). The number of base functions used did not 
exceed 15, which imposed well-known limitations on the calculation results [6, 15]. In the 
present study the overall characteristics of the nonmonotonic relaxation process were studied 
using the method of [13], direct numerical integration of the Boltzmann equation. 

Three families of initial conditions were considered: 

A. The model distribution of [2, 15], consisting of two monoenergetic beams 

I ~  ) ( ~ = p 1 6 ( v - a ) +  p2a(v--b),O<a<b<eo, (2.2) 
where  t he  g e n e r a l i z e d  f u n c t i o n  6 ( v - -  G) i s  s p e c i f i e d  by the  e x p r e s s i o n  

O 

All parameters defining Eq. (2.2) were chosen to be nonnegative. Instead of the criterion 
of [15], here and below its equivalent 

M2(0) > t, (2 .3 )  

was u s e d ,  b e i n g  s i m p l e r  f o r  p r a c t i c a l  c a l c u l a t i o n s .  I t  can  be o b t a i n e d  f rom t h e  known r e l a -  
t i o n s h i p  [12] b e t w e e n  t h e  r e d u c e d  moments M n o f  t he  d i s t r i b u t i o n  f u n c t i o n  and t h e  c o e f f i -  
c i e n t s  a n [see Eq. (1.5)] of the expansion in Laguerre polynomials L~/2(v2/2) 

From t h e  c o n s e r v a t i o n  laws Eq. ( 1 . 3 )  we have  Pz + P2 = 1, pza  2 + p2b 2 = 3. 

With  c o n s i d e r a t i o n  of  t h i s ,  i t  f o l l o w s  f rom Eq. ( 2 . 3 )  t h a t  t h e  p r o c e s s i n g  of  f i l l i n g  o f  
t h e  t a i l  and dome ( ! )  w i l l  be  n o n m o n o t o n i c  ( compare  [ ] 5 ] ) ,  i f . t h e  beam e n e r g i e s  s a t i s f y  t h e  
i n e q u a l i t y  ]5 -- 3 ( a  2 + b 2) + a2b  2 < O. 

B. To c o n s i d e r  p o s s i b l e  p r a c t i c a l  a p p l i c a t i o n s  of  t he  e f f e c t ,  i n i t i a l  c o n d i t i o n s  o f  t h e  
form 

]~ (~ = Pl (2~T1) -3/2 exp (--  v2/2T1) + p26 (v - -  a), ( 2 . 4 )  

were  s t u d i e d ,  t h e s e  s i m u l a t i n g  t h e  r e s u l t  o f  s e l e c t i v e  e x c i t a t i o n  (p2 > O) or  a b s o r p t i o n  (P2 < 
0), imposed on an equilibrium Maxwell background. Accordingly, it was assumed that Pz, Tz 
are nonnegative. 

On the basis of the conservation laws, Eq. (].3), the partial densities are expressed by 

Pl = ( a 2  - -  3)/(a 2 - -  3T1), P2 = 3(t - -  TO/(a 2 -- 3T~). ( 2 . 5 )  

With selective excitation, where P2 > 0, the condition of nonmonotonic relaxation (2.3) with 
substitution of Eq. (2.5) leads to the inequalities 

O.<a2< a~, a~<a2<oo, a~ = -~- [5 (l + T1) q- V (25T~--I0)T1 + 25]. ( 2 . 6 )  

The requirement of reduced population of the tail is insured by the selection of TI < I. 
It then follows from the positive values of the densities (2.5) that the beam energy must ex- 
ceed the mean energy of thermal molecular motion (a 2 > 3) and must be chosen from the second 
inequality of Eq. (2.6). The alternative choice Tz > I may produce nonmonotonic relaxation 
in the region of the distribution dome. In this case the positiveness of Pz, p2 is insured 
by the condition a 2 < 3 and the beam energy must be chosen from the first inequality of Eq. 
( 2 . 6 ) .  

For  s e l e c t i v e  a b s o r p t i o n  (P2 < 0) in  a s i m i l a r  manner  we f i n d  t h a t  f o r  n o n m o n o t o n i c  r e -  
l a x a t i o n  in  t h e  h i g h  e n e r g y  r e g i o n  t h e  a b s o r p t i o n  l i n e  mus t  s a t i s f y  t h e  i n e q u a l i t i e s  

a ~ < a ~ 3 T 1 ,  T l < i .  (2.7) 

For T I > I nonmonotonic relaxation will occur if 3TI < G 2 < a~. 

C. Smooth initial conditions were considered using the example of a one-parameter family 
of [3]: 
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]~) (v) = ]o (v) F ~  ) (v~/2), 
(2 

x 27.  x,1. + ,  j 

Here the conservation laws are considered directly in the form of Eq. (2.8). The distribu- 
tion function of Eq. (2.8) is positive at 0 ~ ~ 4 0.02563. The condition for nonmonotonic 
evolution of the tail (2.3) is equivalent to the inequality (see [3]) for the family para- 
meter 44/45 + (28/3)~ > I. In accordance with these inequalities the evolution of f(~ 
was studied in the range 0.00238 ~ M ~ 0.0256. M 

Analysis of the calculation results reveals that the process of nonmonotonic relaxation 
in the high energy region has a number of characteristic features common to all the initial 
conditions considered, Eqs. (2.2), (2.4), (2.8). 

The typical evolution of the process can be traced clearly by the time dependences of 
relative populations (solid curves of Fig. la). Here we use the result of:initial conditions 
(2.8) for ~ = 0.0256. To characterize the rate of nonmonotonic relaxation of individual ener- 
gy groups (populations) the expression 

t In F(v,t). t ] 
(b ,  t) = ~V F (v, t + ~ )  - t . 

was calculated -- the evolution rate. Characteristic curves of the evolution rate together 
with time profiles of individual populations are shown in Fig. Ib for initial conditions Of 
Eq. (2.4) at Tl = 0.2, ~ = 3. 

It is evident from Fig. I that beginning at some particle energy the evolution of the 
developing overpopulation has the character of a variable amplitude wave with steep leading 
and sloped trailing edges, propagating in the direction of higher energies. The moment of 
arrival of this wave in some region of velocity space is characterized by an. abrupt increase 
in the evolution rate of the local population (the steep leading edge). After achievement 
of the maximum the relative repopulation slowly decreases to the equilibrium value of unity 
(the sloping trailing edge). As it moves into higher energy regions, the amplitude of the 
overpopulation wave decreases, which can be explained by an increase in the local contribu- 
tions to the integrals of the conservation laws Eq. (1.3). 

It is evident from the asymptote (2.1) that with approach of the gas toward equilibrium 
for the initial conditions considered here a linear relaxation stage sets in, where y(v, t) 
%2 = I/3. The time interval in which the process develops nonlinearly can be estimated from 
the time tr, beginning at which for all t > t r the inequality 

Iy(v, t) --  ~21/~ < O,i. (2 .9)  

is satisfied. 

Analysis of the results using criterion (2.9) reveals that the time for transition to 
the linear stage of relaxation in the region v < 10 lies in the range t r = 15-20 for all ini- 
tial conditions studied. 

The time evolution of the reduced moments, Eq. (1.7), for n ~ 5 is also nonmonotonic 
in character. The form of the functions Mn(t) is shown in Fig. 2a for initial conditions 
(2.2) at a = I, b = 3. 

The mean level of the overpopulations which develop can range over wide limits, depend- 
ing on the parameters chosen in the initial conditions. Thus, for an initial distribution 
function Eq. (2.4) at Tl = 0.9, change in the beam velocity in the interval a= 3-4.5 leads 
to a growth in the local overpopulation in the tail of two orders of magnitude (see Fig. 2b). 
In general, it can be said that under conditions of well developed nonmonotonic relaxation 
the overpopulation in the velocity range 4 ~ v ~ 10 exceeds the equilibrium value on the 
average by a factor of 2-3. For the given particle energy excitation continues for t = 5-6, 
while the total relaxation time of the repopulation wave reaches t ~ 20. 

An example of nonmonotonic relaxation in the region of the distribution function dome 
is shown in Fig. 3a, which depicts results for initial conditions (2.4) at T I = 1.8, a = I. 
A similar process, developing in parallel to nonmonotonic relaxation in the tail region, can 
be observed for all initial conditions (2.2) at H2(0) > I, which corresponds to the general- 
ization of the criterion of [15] to low energies. The overpopulation amplitudes and relax- 
ation times obtained for the redistribution dome are approximately an order of magnitude 
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lower than for the developed effect in the tail region. 

3. An additive contribution of the form 

I V2 )' g 
/0(v)iF1 -P,z,T , (3.1) 

where p is not an integer, will transform the initial conditions of Eqs. (2.2), (2.4), (2.8) 
to the class of distribution functions with a powerlike tail asymptote [14, 4]. In fact, in 
this region [!8] fo(v)if1(--p, 3/2, v2/2)'~ (v2/2) -p-a/2 . The present study considers the effect of 
small additions of the form of Eq. (3.1) at p = 3/2 on the process of nonmonotonic relaxation. 
In this case the criterion of [15] is inapplicable, since at the initial moment the distribu- 
tion function tail is overpopulated and M2(0) does not exist. In addition, at moderate veloc- 
ity values zFI(--3/2, 3/2, v2/2) behaves like a Laguerre polynomial L~/2(v2/2) [18], and it 
can be expected that in this region the nonmonotonic relaxation effect will be maintained. 

On the whole the calculations performed confirm this assumption. For initial conditions 

/(~ (v) = f~ (v) f~)(v2/2)+O'OO21F1 2 '  2 '  2 ( 3 . 2 )  

Fig. 3b shows the change over time of the relative populations; for comparison the dashed 
lines show corresponding data for the initial distribution of Eq. (2.8) (see also Fig. la). 
It is evident from Fig. 3b that the nonmonotonic character of relaxation is maintained for 
4.5 ~ v ~ 5.5, and in the high velocity region the distribution function evolves monotoni- 
cally. The results indicate that the addition of Eq. (3.1), although low in absolute value, 
significantly affects the nonlinear effect, and a criterion for nonmonotonic relaxation ap- 
plicable to initial conditions with a powerlike tail is necessary. 

The evolution of initial conditions of the type of Eq. (3.2) was studied in [6] by inte- 
grating system (1.6). The set was defined by the expression p = (3 + n)/2, n = 0, I,.... In 
the expansion of Eq. (1.5) 15 base functions were maintained, which according to the esti- 
mates of [6] provided usable accuracy in distribution function calculations only for t > 10. 
The results of the present study were obtained by integrating the kinetic equation, and are 
valid for t ~ Te, where T e is the time step used in integrating Eq. (1.4). Control 'calcula- 
tions revealed that the results obtained in the interval T e < t ( 10 agree Well with numeri- 
cal'solution of Eq. (1.6) with 37 base functions. 

4. The Krook model is often used in calculating kinetic processes in gases. For iso- 
tropic relaxation in the notation used herein the corresponding kinetic equation can be writ- 
ten in the form 

al(v, t)/at = / , ( v )  - l (v,  O. ( 4 . 1 )  

The shortcomings of this equation relative to homogeneous relaxation problems were con- 
sidered in [9, II]. However, the disagreement noted normally did not lead to total distor- 
tion of the picture of distribution function evolution. In the given case nonmonotonic 
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relaxation is an example of a process which in principle cannot be described by the relaxa- 
tion-type equation (4.1). In fact, the solution of the evolution problem for Eq. (4.1) has 
the form 

/(u, t) =/O(v) + (](o) (v) --/o(V))e-t, (4.2) 

whence it follows that for any initial conditions for all molecular velocity values the pro- 
cess of transition to equilibrium is monotonic. For a clear comparison, the dashed lines of 
Fig. la show the evolution of relative populations according to Eq. (4.2) for initial condi- 
tions (2.8) at p = 0.0256. The evolution of the reduced moments of all orders is also mono- 
tonic [see Eqs. (1.7), (4.2)]. 

It will also be useful to note that the relaxation rate function calculated for Eq. (4.2) 
gives y(v, t) = I, i.e., for the Krook equation the evolution rate is the same at any time 
for the entire energy spectrum. Such a property is quite often ascribed (see, for example, 
[4]) to a gas with Maxwellian distribution, which of course, is erroneous (see Fig. Ib). 

5. It was noted in [2, 17] that the nonmonotonic character of relaxation may have a 
significant effect on the nonsteady-state kinetics of processes having an energy barrier. 
In order to quantitatively estimate the possible size of the effects, the rate of a model 
high threshold reaction was calculated. In the model used the relative reaction rate was 
defined by the expression 

R(t,  Uo) = N(i ,  vo)lNo(vo) , ' (5.1)  

(t, t)sm , t). N 

The product of the modulus of the relative molecular velocity g = Ivl -- v2 by the differen- 
tial section of the elastic process was written in the form 

Br(g, Vo)= ~.~_~k(g__Vo) ' H ( x ) = { t ,  x > 0 ,  (5 .2)  
0, x~<0,  t 

where H(x) i s  a Heav i s ide  s t ep  f u n c t i o n ;  v0 i s  the  c h a r a c t e r i s t i c  v e l o c i t y  d e f i n i n g  the va lue  
of the energy barrier. 

The function N(t, v0) was calculated for nonsteady-state distribution functions describ- 
ing translational relaxation of initial distributions (2.2), (2.4), (2.8). Correspondingly, 
N0(v0) was determined for the equilibrium distribution (1.2). It was then assumed that the 
converse effect of the inelastic process on atomic gas relaxation could be neglected. 

For distribution functions isotropic in velocity space, the integral in Eq. (5.1) re- 
duces to the form 

o o o o  1 

N(t ,  v0) 2=.f , f  v 22 = dv,d zv,v2/(t, v,) / (t, l;2) ~ dxH [~ (v,, us, x) - -  vo] , 
0 0 --I 

~b(v,, v2, x) = (v~ + v ~ -  2v,v2x) 1/2. 
(5.3) 

The expression for N0(v0) can be calculated explicitly: 

(5.4) 

(where ~(x) is the probability integral [18]). 
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Using numerical calculations [2, 16] predicted that evolution of the distribution func- 
tion for nonmonotonic relaxation is determined by the initial conditions and not dependent on 
the molecular interaction potential. This makes it possible to use the distribution functions 
calculated in Sec. 2 to estimate the effect of nonmonotonic relaxation on the rate of thresh- 
old reactions for other molecular models. In particular, calculations were performed for the 
hard sphere case. In place of Eq. (5.2) the function 

B m  (g, Vo) = - -  Vo). 
was used. The corresponding relative reaction rate Rs(t, v0) is determined by the expressions 

0 0 --i 

• H (vl, x) -- v01, N0,  = -3/2 (I + v /4) (-- 

The time dependences of relative rates of threshold reactions for both molecular models 
were compared in the dimensionless time scale T = %2,sts = k2,Mt M. Here %2,s = 1.033; %2,M = 
1/3, the minimum eigenvalues of the linearized collision operator defining the characteristic 
linear relaxation times, and ts, t M are dimensionless times measured in units of the mean time 
between collisions for hard spheres and pseudo-Maxwellian molecules, respectively. 

The barrier range I ~< v0 ~ 7 was studied. It was shown for all distribution functions 
calculated in Secs. 2, 3 that with increase in v0 the maximum values of the relative reaction 
rate R(t, v0) as well as the mean values <R(t, v0)> over the time interval [0, t] increase. 
For low barriers the rate R(t, v0) is a monotonic function of time. With increase in v0 the 
character of the time dependence of R(t, v0) becomes nonmonotonic, which agrees with the be- 
havior of relative populations in the process of tail filling (see Figs. I, 3b). 

A characteristic example of R(t, v0) curves for initial conditions (2.4) at Tl = 0.2, 
a = 3 and various barrier values is shown in Fig. 4a. The straight lines are values of <R(t, 
v0)>t for t = 5, 15. The length of the lines indicates the interval of averaging. It is evi- 
dent that R(t, v0) approaches its equilibrium value over a time period t -~ 15, which corre- 
lates with the relaxation period of the overpopulation wave. Comparison of the curves of 
R(t, v0) with curves of the evolution of relative populations shows that the value of the 
barrier v0 at which nonmonotonic behavior of R(t, v0) commences is markedly above the velocity 
value defining the lower limit of nonmonotonic relaxation of the distribution function tail. 
In particular, for initial conditions (2.8) at ~ = 0.0256 the curves R(t, v0) for barriers 
v0 ~< 7 behave monotonically (compare Figs. la, 4b). 

It follows from the calculations that the increase in reaction rate R(t, v0) produced 
by small additions of the form of Eq. (3.1) does not exceed 10% for v0 ~< 7, although it can 
be expected that for further increase in barrier height the contribution of powerlike tails 
may become significant. 

Comparison of reaction rates Rs(ts, v0) and R(tM, v0) calculated for initial conditions 
(2.2), (2.4), (2.8) shows that to three significant figures the effect of transition from 
pseudo-Maxwellian molecules to hard spheres reduces to a reduction in the time scale by a 
factor of ~2,M/~2,S. When the time scale T is used the quantities Rs(T, v0), RM(~, v0) prac- 
tically coincide on the graph. An example of such curves for initial conditions (2.8) at p = 
0.0256 is shown in Fig. 4b. 

Analysis of the results obtained reveals that in the process of nonmonotonic relaxation 
the mean rates of binary threshold reactions may exceed the equilibrium values by a factor 
of more than two times. This estimate is valid for all powerlike intermolecular repulsion 
potentials from the Maxwell model to hard spheres. The time intervals over which the mean 
reaction rate significantly exceeds the equilibrium value comprise from 5 to 15 mean molecu- 
lar path times, increasing with decrease in "rigidity" of the potential. 

It follows from these quantitative estimates that nonmonotonic relaxation may signifi- 
cantly accelerate barrier type kinetic processes developing with it as a background. 
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NONLINEAR WAVES ON THE SURFACE OF A LIQUID FILM RUNNING DOWN A 

VERTICAL WALL 

Yu. Ya. Trifonov and O. Yu. Tsvelodub UDC 532.51 

It is known from experiments [I, 2] that the flow of a liquid film down a vertical plane 
has a wave character even for small Reynolds numbers. This is related to the fact that the 
flow of a film of thickness h with a plane free surface whose velocity profile is semipara- 
bolic, u = 3u0(y/h -- y2/2h2), is unstable starting from very small Reynolds numbers, i.e., 
infinitesimal long-wave disturbances increase exponentially with time [3, 4]. As a result 
of nonlinear effects stationary periodic and soliton flow regimes may be formed. Since a 
complete treatment of such problems is extremely complicated, various simplifications are 
used to solve it. 

Thus, for low flow rates (Re ~ I) the problem of wave regimes can be reduced to that of 
solving a single equation for the film thickness [5]. However, stationary traveling waves 
are practically not observed at these flow rates, and although the form of the solutions of 
this equation [6] is in good qualitative agreement with the form of the waves observed in 
experiment, there is no quantitative agreement. A similar situation occurs also with a two- 
wave equation [7] which contains only quadratic nonlinear term, and therefore describes the 
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